
 Page 1

The ABCs of XML
By John T. Sever

Cascade Controls, Inc.

The project was nearly finished. The end was in sight after an incredible effort of long hours, weekends,
battles, changes, and all of the normal challenges that accompany a large project. We had delivered roughly
80% of the automation software for a life sciences S88 batching application when a problem surfaced - a big
problem. Equipment modules and phases included commands to devices that could cross controller
boundaries. The code construct empoloyed for these commands were non-deterministic when crossing
controller boundaries – by design. This meant that the destination may not receive the command. The
problem appeared sporadically but rarely on our development system and we could never recreate the issue
in a controlled environment. On a large plant-wide system with large IO bus networks, the problem was
suddenly pervasive.

The code had to be changed. To change one instance was simple enough but we didn't know how many
instances existed throughout the nearly 2,000 phases and equipment modules each containing many steps
which in turn contain multiple actions. My initial ballpark estimate to manually modify and validate the
changes was between one and two manyears. Of course the project didn't have money or time burning a
hole in its proverbial pocket nor were qualified resources available to do the work.

A few years earlier this would have been a disaster for everyone involved. A few years earlier, we didn't
know what was possible with XML and XSLT.

Once we understood the problem and the required code changes, we knew that only XSLT could help us
make the necessary code modifications with minimal project impact. We created an XSLT transform to
find every action with the faulty code construct, modify the code appropriately, and record each code
modification in a change log file. The code was exported from the DCS system as structured text, converted
to XML, transformed with XSLT to fix the problems, converted back to structured text, and imported back
into the system. The XSLT transform was validated so that each change did not have to be individually
tested. All of the changes were completed with less than a man-month of work, and no impact to schedule,
and minimal budget impact.

Many in the world of automation have not bothered to learn about XML (eXtensible Markup Language) or
XSLT (eXtensible Stylesheet Language Transformation) believing they are technologies for web
developers, IT personnel, and consultants. The truth is that XML and XSLT are finding their way into
nearly aspect of computer technology today. XML based technology has spread so pervasively and so
widely across application domains that many are unaware of its impact in their own discipline or of the
potential value it brings.

This four part article will introduce the basics of XML, introduce XSLT as a query and transformation
language for XML data, and provide examples of how these technologies can be used in the world of
automation. The three parts to follow are summarized below:

XML and XSLT For Automation Engineers

 Page 2

Introduction to XML

XML is a flexible general purpose data storage structure in human readable text format. Despite its name,
XML is not really a "language" like HTML. Instead, XML provides a set of rules for anyone to create their
own markup language. Anyone familiar with HTML will recognize many similarities with XML. These
similarities made it easy for web developers to jump aboard the XML bandwagon. Its proliferation on the
web has created some misconception of XML as a web-only technology. In fact Dictionary.com defines
XML as follows:

A metalanguage written in SGML that allows one to design a markup language, used to
allow for the easy interchange of documents on the World Wide Web.

XML has been used for much more than the easy interchange of document on the World Wide Web. A
more appropriate definition might read:

A metalanguage written in SGML that allows one to design a markup language, used to
allow for the easy interchange of data.

In this article I will introduce the basic rules of XML, terminology, and related standards. You'll learn how
to read XML documents and how to create your own XML documents. The article will also discuss
declarations, processing instructions, namespaces, well-formedness, validity, DTDs, schemas, and encoding.
Finally, I'll point you to a number of resources and applications to help you learn more about XML and to
help you work with your own XML documents.

Introduction to XSLT

I recently overheard the following conversation between two automation engineers:

Engineer 1 - They want to review the recipes.

Engineer 2 - How do they want them?

Engineer 1 - Can you print them out?

Engineer 2 - That'll take a few days.

Engineer 1 - Can you export them?

Engineer 2 - I can save them as XML.

Engineer 1 - What do I do with that?

Engineer 2 - I don't know.

I'm not sure how this problem was resolved because I couldn't stick around to help them out. Had either of
them known about XSLT, they could have transformed those XML recipes into any number of formats.
The easiest of these would have been a CSV that could be opened in Excel. Another option (my favorite)
would be to transform the recipes into MS Visio drawings. Either of these two tasks could have been
accomplished in a few short hours and it would have worked on all 1,500 recipes.

XSLT is a standard for converting XML to something else. The something else is growing rapidly. Most
frequently, the something else is XML in a different data structure. This article opened with a problem
whose solution was to convert one XML file (with bad code) to another XML file (with good code) Other
common formats created by XSLT include HTML and plain text. One of the most popular formats our
company creates with XSLT is MS Word documents. Microsoft supports XML as a format for most or all
of its Office 2003 applications.

In this article I will introduce XSLT as a declarative language. I will describe the transformation process
and explain some of the basic XSLT programming elements. The article will also discuss XSLT

XML and XSLT For Automation Engineers

 Page 3

expressions, match patterns, recursion, templates, default templates, XSLT processors, scripting, and some
of the limitations of XSLT. Finally, I'll point you to a number of resources and applications to help you
learn more about XSLT and to get up the XSLT learning curve.

Putting It All Together

Learning a new language is not a trivial undertaking. There needs to be a big pay-off if you're going to
spend the time to learn new data structures and languages. Rarely has a new language made your life better.
This one will.

The final article will provide real world examples of what can be accomplished with XML and XSLT. I'll
make sure to point out obstacles that commonly arise and how to over come these. I'll provide XML
samples from real automation systems and accomplish tasks that have practical use in the everyday life of
an automation engineer.

I hope that once we've finished this series you'll be well armed and ready apply these concepts to your
everyday tasks.

Online Resources

www.w3c.org

www.xml.com

www.xml.org

www.topxml.com

msdn.microsoft.com/xml

John T. Sever is president and founder of Cascade Controls, Inc., and has 20 years of experience as a process and
automation engineer. He can be reached at 708/802-6000 or ,at johnsever@cascon.com.

Wednesday, August 20, 2008 Page 1 of 6

The ABCs of XML
Part 2 - XML

By John T. Sever
Cascade Controls, Inc.

Introduction

The World Wide Web Consortium's (www.W3C.org) XML Recommendation opens with a list of ten
design goals. The first goal states XML shall be straightforwardly usable over the Internet.
Straightforwardly or not, XML is used extensively over the Internet and in fact has become a defacto
standard for data interchange. Because of its association with Internet applications, automation
engineers have sidestepped XML assuming it has little applicability to their daily work. This is a
mistake. Although this technology has been used extensively for Internet based applications, XML is an
extremely simple and flexible data format with untold uses waiting to be uncovered in the world of
industrial automation.

Alone, XML data is simply raw text that has little to offer an automation engineer. But XML is not
alone. Developers everywhere have jumped aboard the XML bandwagon to create a seemingly
bottomless reservoir of tools, applications, services, and standards all designed to create, consume,
translate, store, and present XML data. This infrastructure of supporting applications is what makes
XML such a compelling choice for application data. This article will introduce XML fundamental
concepts for those who have so far managed to avoid this important technology. Parts 3 and 4 of this 4
part article will address XML supporting technologies.

Not A Typical Language

XML is not a language in the sense that there are defined keywords, functions, or statements. XML is
often compared to HTML because it works well with HTML applications, has similar markup, and has
been joined with HTML to create the XHTML specification. However, the HTML specification defines
a list element tags like <body>, <h1>, , and <i> with defined behavior for HTML browsers. XML
lacks a defined set of tags and allows anyone to create their own set of tags and attributes to suit their
own application needs. Instead, the XML specification defines a set of markup rules that must be
followed for the marked up text to be interpreted as XML data.

Document Metaphor

XML is organized in a logical or physical structure called a document. An XML document may be a file
on disk, it may be streamed from a server, or it may be hard coded text inside an HMI VBA application.
Though the data may have many different sources, the document metaphor still applies as long as it is
well-formed. To be well-formed means that the document adheres to all of the markup rules defined in
the XML recommendation.

The ABCs of XML Part 2 - XML

Sample XML

The sample fragment was lifted from a recipe exported from Rockwell's RSBatch product. Rockwell
defined the element and attribute names for describing an RSBatch recipe. Other system vendors may
define a separate set of elements and attributes to describe a batch recipe. If you are a system integrator
that works with batch recipe software from different system vendors, you may choose to define your
own system agnostic batch recipe XML data structure (or schema) for internal development purposes
that can easily be converted to/from a vendor specific structure.

<!-- This is an XML comment -->
<Step XPos="600" YPos="600" AcquireUnit="true">
 <Name>FEED:1</Name>
 <StepRecipeID>FEED</StepRecipeID>
 <UnitAlias>UNIT500</UnitAlias>
 <FormulaValue>
 <Name>AGIT_SPEED_SP</Name>
 <Display>true</Display>
 <Value />
 <Real>75</Real>
 <EngineeringUnits>RPM</EngineeringUnits>
 </FormulaValue>
</Step>

The first thing to notice is the angle brackets (< and >) which mark an XML tag. An XML element
includes a start tag like <Step>, an end tag like </Step>, and everything between the two. Notice that the
Step element contains four child elements Name, StepRecipeID, UnitAlias, and FormulaValue. The
FormulaValue element contains 5 child elements. This parent/child relationship between elements shows
that XML can support hierarchical data structures.

XML is designed to be self-describing. A document's data is stored within element values and attribute
values such that element and attribute names describe the data they hold much like data is described in a
relational database by table names and field or column names.

Data stored as an element value is the text between start and end tags. In our sample, the value for the
element EngineeringUnits is RPM. Data stored as an attribute value is found on the quoted right side of a
Name="Value" pair. In our example, the Step element contains three attributes named XPos, YPos, and
AcquireUnit which have attribute values 600, 600, and true respectively.

To be considered a well formed, an XML document must adhere to the constraints of well-formedness
defined in the W3C XML specification. I've distilled these constraints into the following 10 easy rules.

1. XML is just plain old text

XML is designed to be human readable as text. This means that any text editor can be used with an
XML document. A simple text editor will treat an XML document just as it would an INI file, a
CSV file, or any text file.

2. XML is Data

XML is designed as a flexible self-describing data structure. By itself, XML cannot do anything nor
does it define how data should be processed or handled. By contrast, HTML includes both data and
a description of how it should be displayed in a browser.

3. XML documents must have one root element

There can be only one top level root element in an XML document and all other elements must be
between the root element start and end tags.

The ABCs of XML Part 2 - XML

4. XML white space data is preserved

HTML reduces consecutive white space characters to a single space character. With XML, white
space is interpreted as data – just as any other character.

5. XML naming rules

Element names cannot include white space, must start with a letter and cannot include characters that
are used for markup such as <, >, ;, &, among others. It is generally a good idea to limit element and
attribute names to letters, numbers, and underscore.

6. XML elements must be closed

An element can be closed with an end tag or optionally with the short hand notation for empty
elements. By contrast, HTML does not require that elements be closed. In fact most browsers will
attempt to render any HTML element whether or not it is closed properly – XML is not so forgiving.

An empty element is one with no value and no child elements (although it may have attributes). An
empty element may be closed with the short hand notation /> at the end of the start tag. For example
<Value /> is equivalent to <Value></Value>.

7. XML elements must be properly nested

In HTML, elements were allowed to overlap like this <i>bold and italic text italic
only</i>. This type of element crossing is not allowed. An element that starts inside a parent
element must end inside the same parent before the parent element is closed.

8. XML is case sensitive

An XML tag <recipe> is not the same as <Recipe>. HTML however is not case sensitive so <h1> is
identical to <H1>.

9. XML attribute names must be unique within an element

An element may have any number of attributes but each attribute name must be unique. The
following example is incorrect:
<People Person="John Doe" Person="John Smith" />

This example could be structured properly as follows.
<People>

<Person>John Doe</Person>
<Person>John Smith</Person>

</People>

or
<People>

<Person Name="John Doe"/>
<Person Name="John Smith"/>

</People>

10. XML attribute values must be quoted

XML attribute values must be enclosed either in single quotes or double quotes. If an attribute value
contains a double quote character enclose the value in single quotes. Likewise, if the attribute value
contains a single quote, enclose the value in double quotes. For attribute values that may include
either type of quotation character, standard HTML character entities may be used – " for the
double quote character and ' for the single quote character.

The ABCs of XML Part 2 - XML

Comments

The markup for a comment in XML is identical to HTML. The comment opens with <!-- and closes
with --> and may span multiple lines.

XML Declaration

An XML document may begin with an optional XML declaration. The XML declaration must precede
all other content is not considered part of the XML document. It is used to provide information to XML
processors about the document's content. Because the declaration is not an element it must not have a
closing tag. The declaration looks like this
<?xml version=”1.0” encoding=”utf-8” standalone=”yes”?>

If the declaration is included, version is the only required attribute and must have a value of either 1.0 or
1.1. Version 1.1 supports special Unicode character handling functionality that is rarely needed and
therefore version 1.0 is used almost exclusively.

The encoding attribute defines the character encoding used by the document so that an XML processor
may properly parse the document. The default encoding used by XML processors is UTF-8.

The standalone attribute is used when the document refers to another documents such as a schema
document (described later). When not specified, this attribute defaults to "yes" (no reference document).

Processing Instructions

Any number of processing instructions may appear below the XML declaration and before the root
element. It must be enclosed in <? and ?> like the XML declaration and provides application specific
handling information. A Microsoft Word 2003 XML document may include the following processing
instruction which tells the Windows operating system to identify the XML document as an MS Word
file. When double-clicked, an XML file with this processing instruction will open in MS Word.
<?mso-application progid="Word.Document"?>

XML Validation

An XML document has a specific structure of element names, attribute names, and hierarchical parent-
child relationships. As long as a document meets the requirements for well-formedness it can have any
structure and contain any data. This flexibility is what makes XML extensible. However, applications
that interpret XML documents have expectations that the XML will adhere to a particular structure.
Validation is the process of checking an XML document for conformance to a defined structure or
schema. A schema can be defined within the XML document or a reference can point to an external
schema document. There are multiple standards for defining a schema including DTD – Document
Type Definition, XSD – XML Schema Definition Language, and XDR – XML Data Reduced. An XML
document that that adheres to a defined schema definition is said to be valid.

A schema is not required when developing XML applications and in fact can significantly complicate
XML application development. When you control a document's content and related applications, you
can work more efficiently without a schema.

Software vendors that support XML data normally publish a schema so that other applications can
properly validate content before working with a document. A control system vendor that supports
import of XML data into the control system will likely validate a document before the import process to
prevent loading data that may lead to a control system fault.

Namespaces

XML namespaces solve a problem that can occur when an element name may have different meaning
within a single document. For example, the element name template is an XSLT keyword with meaning

The ABCs of XML Part 2 - XML

different than the template element used in an MS Word XML document. All elements and attributes in
an XML document are included in a namespace even if a namespace is not explicitly declared. When no
namespace is defined in a document, content is included in the default null namespace.

A namespace may be defined as an attribute of the start tag of an element with the following format:
xmlns:prefix="namespaceURI"

Where a namespace is declared for an element, all child elements with the same prefix are included in
the same namespace. The element where the namespace is declared may also be included in the
namespace if the same prefix is used in the element name.
<cc:Recipe xmlns:cc="http://www.cascon.com/Recipe">
 <cc:Step cc:XPos="600" cc:YPos="600" AcquireUnit="yes">

 <cc:Name>Feed:1</cc:Name>
 <UnitAlias>Unit500</UnitAlias>

 </cc:Step>
</cc:Recipe>

In the sample above, the prefix cc refers to the namespace http://www.cascon.com/Recipe. Elements
included in this namespace include Recipe, Step, and Name. The element UnitAlias and the attribute
AcquireUnit are included in the default null namespace.

The namespace prefix cc serves as a shorthand or alias notation for the full namespace
http://www.cascon.com/Recipe. The actual namespace may be any string value but it is meant to be
globally unique. XML parsers do not enforce uniqueness nor do they expect any particular notation
such as a web URI. A web style URI (Universal Resource Identifier) is frequently used because a real
web URI like www.cascon.com is guaranteed to be globally unique across the internet – greatly
minimizing the chance of colliding namespaces.

To simplify this example, the namespace can be declared as the default namespace with no prefix as
shown in the following example.
<Recipe xmlns="http://www.cascon.com/Recipe">
 <Step XPos="600" YPos="600" AcquireUnit="yes">

 <Name>Feed:1</Name>
 <UnitAlias>Unit500</UnitAlias>

 </Step>
</Recipe>

Notice that the namespace attribute xmlns no longer includes the prefix definition cc. Without a prefix, a
namespace becomes the default namespace for the element where it is declared. This makes the Recipe
element and all its child element members of the namespace http://www.cascon.com/Recipe. Default
namespaces apply to elements only, not to attributes. Therefore, the attributes of the Step element are
included in a null namespace (equivalent to xmlns=""), not the default namespace. This special behavior
for attributes can be quite confusing. This quirk of default namespaces is not difficult to work around as
long as you understand how it works.

You'll likely not need to bother with namespaces in documents created for internal purposes. However,
you'll need to understand namespaces when working with vendor generated XML files. You will see the
importance of namespaces in next week's XSLT article.

Tuesday, September 02, 2008 Page 1 of 12

The ABCs of XML
Part 3 - XSLT

By John T. Sever
Cascade Controls, Inc.

18312 South West Creek Drive
Tinley Park, IL 60477

Introduction

XML data is increasingly more prevalent in the world of industrial automation. System vendors
increasing provide options for data interchange through XML and industry organizations adopt XML as
a standard for data transport like the OPC Foundation's OPC XML-DA specification. Still, many front
line automation engineers find no benefit to old data restructured in a new format as XML. They are
correct that little benefit is found in XML alone. Instead the benefits they seek may be found in
technologies designed to support, consume, and manipulate XML data. One such technology from the
World Wide Web Consortium (www.w3c.org) is a language specifically designed for transforming or
restructuring an XML document into something else. The eXtensible Stylesheet Language
Transformations (XSLT) is a simple yet powerful language that can bring enormous benefit to those
willing to learn it.

In this article, I will introduce the basics of XSLT through an example derived from an actual customer
request. My coverage of the topic will be limited by the space available in this format however, I hope
to awaken interest in a technology that might otherwise be overlooked and thereby give to some, a hint
of the benefits waiting to be uncovered.

The Project

My customer maintains a large DeltaV automation system in an FDA qualified environment. The
customer would like a tool that simplifies daily demands of managing a large configuration. Such a
tool, we have determined, is most easily developed around a relational database. Therefore we must
transfer the configuration from control system to database in a structure that best supports the
requirements of this tool.

A prototype of this tool is under development using Microsoft Access 2003 because of its built-in
features for reporting and rapid application development. One such feature is the ability to import XML
data through the File menu (File/Get External Data/Import) allowing the application of an XSLT
transform before importing. This feature imports element normal XML data by creating new tables with
structures based upon structures found in the XML document. The user may optionally choose to
append data to existing tables following a set of mapping rules that match table and field names to
element names in the XML document.

The Transformation

Unfortunately, the XML structure of a DeltaV configuration does not match the desired data structures
to meet our analysis requirements and so the raw XML data must be restructured or transformed into a
different XML structure better suited to the customer's requirements. Before learning the benefits of
XSLT I would have solved this problem by writing VBA code to load the XML document and
programmatically walk the tree of nodes adding new records to database tables using either the DAO or

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 2 of 12

ADO object models. The XSLT solution presented here requires less code, is more robust, easier to
develop, easier to maintain and modify, and is significantly faster than the VBA solution.

The XSLT stylesheet shown here restructures the XML for importing control modules and their
parameters. By dissecting this stylesheet I will explain basic XSLT concepts while explaining solutions
to common data structure problems.

Before reading on, get familiar with the basic structure of a DeltaV XML file. Notice that each control
module is defined in a <module> element that has attributes for tag, plant_area, category, user, and time.
Also review the <attribute> and <attribute_instance> elements that are children of a <module> element.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output encoding="utf-8" indent="yes"/>

 <xsl:template match="/fhx">
 <root>
 <xsl:apply-templates select="module">
 <xsl:sort select="@tag" data-type="text" order="ascending"/>
 </xsl:apply-templates>
 </root>
 </xsl:template>

 <xsl:template match="module">
 <xsl:copy>
 <xsl:copy-of select="description|period|controller|type"/>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="attribute"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="module/@*">
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:template>

 <xsl:template match="module/attribute">
 <xsl:variable name="Instance" select="../attribute_instance[@name=current()/@name]"/>
 <Parameter>
 <ModuleTag><xsl:value-of select="../@tag"/></ModuleTag>
 <name><xsl:value-of select="@name"/></name>
 <type><xsl:value-of select="@type"/></type>
 <xsl:copy-of select="group|connection"/>
 <xsl:copy-of select="rectangle/*"/>
 <categories>
 <xsl:for-each select="category">
 <xsl:value-of select="category"/>
 <xsl:if test="position()!=last()">,</xsl:if>
 </xsl:for-each>
 </categories>
 <enum>
 <xsl:value-of select="$Instance/value/set"/>
 </enum>
 <value>
 <xsl:choose>
 <xsl:when test="@type='BOOLEAN' or @type='FLOAT' or @type='INT16' or
 @type='UINT16' or @type='UINT8' or @type='UNICODE_STRING' or
 contains(@type, '_WITH_STATUS')">

 <xsl:value-of select="$Instance/value/cv"/>
 </xsl:when>
 <xsl:when test="@type='ENUMERATION_VALUE'">
 <xsl:value-of select="$Instance/value/string_value"/>
 </xsl:when>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 3 of 12

 <xsl:when test="@type='EXTERNAL_REFERENCE' or @type='INTERNAL_REFERENCE'">
 <xsl:value-of select="$Instance/value/ref"/>
 </xsl:when>
 </xsl:choose>
 </value>
 </Parameter>
 </xsl:template>
</xsl:stylesheet>

Stylesheet as Transformation

The top element in an XSLT transformation must be the <xsl:stylesheet> element and it must include a
version attribute and the namespace declaration shown here. An XSLT transformation is also an XML
document and therefore it must have a single top level element <xsl:stylesheet>. This element must
include the namespace http://www.w3.org/1999/XSL/Transform and it must have a version attribute. By
convention, the namespace is generally assigned the xsl: prefix used throughout the document to
distinguish XSLT language elements from literal output.

XSLT Transformation Processors

Execution of a transformation is performed by an XSLT processor that accepts XML and XSLT
documents as input and generates a document as output. Output is created through execution of
templates declared within the XSL document. The processor walks the XML tree matching each node
to a template in the XSLT document. If the processor cannot find a matching template in the XSLT file,
it executes a built-in template inside the processor.

The built-in template for element nodes selects child nodes of the current element and tries to find
templates that match these children. This built-in behavior results in automatic recursion down every
branch of the XML source document tree. There is also a built-in template for text nodes which copies
the text to the output. The effect of this built-in template is usually unexpected and unwanted but can be
easily prevented if you understand this behavior.

When a matching template is found for a given node (not a built-in template) the processor will not
automatically recurse its children effectively ending the transformation process for all descendent nodes.
The developer may programmatically choose to continue processing child nodes with <xsl:for-each> or
by invoking <xsl:apply-templates> providing fine control of how child nodes are processed.

Output Formatting

The second line of our transform, <xsl:output>, controls output format and must appear before any
templates. The attributes specify output formatting instructions for the processor.
 <xsl:output encoding="utf-8" indent="yes"/>

Templates

In our example, the processor starts with the document root and, finding no matching templates, invokes
the built-in template which selects children of the document root and looks again for matching
templates. The only child of the document root is the <fhx> element which is passed to our first
template that matches <fhx> elements as children of the document root (identified by the slash).

This template generates a literal <root> element in the output. Inside the <root> element <xsl:apply-
templates select="module"/> invokes the processor to find matching templates for all <module>
elements that are children of the current <fhx> element. Before finding matching templates, the
processor is instructed to sort the <module> elements in ascending order by the tag attribute of each
<module>. The @ prefix identifies an attribute name instead of an element name.
 <xsl:template match="/fhx">
 <root>
 <xsl:apply-templates select="module">
 <xsl:sort select="@tag" data-type="text" order="ascending"/>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 4 of 12

 </xsl:apply-templates>
 </root>
 </xsl:template>

The processor executes our next template for each <module> element that is a child of the topmost <fhx>
element. The module matching template performs a shallow copy of the current <module> element to the
output using the <xsl:copy> element. A shallow copy is one that copies a single node without including
attributes or descendants. The result is one <module> element in the output for each <module> element in
the input. Inside <xsl:copy> are three more XSLT elements. Because these three lie inside the opening
and closing <xsl:copy> tags, their results will be output inside the <module> element created by the
<xsl:copy> statement. In this way we can create rich hierarchical output from any type of input XML.
The next <xsl:copy-of> element performs a deep copy which includes a copy of all attributes and
descendants (children, grand-children, and so on). The <xsl:copy-of> element includes a select attribute
that identifies four elements separated by the pipe (|) operator which translates as a logical OR. The
result is a full copy of <description>, <period>, <controller>, or <type> elements that are children of
the current <module> element.

The final two statements of our <module> matching template instruct the processor to find matching
templates for each of the attributes (@*) of the current <module> element and to find matching
templates for each <attribute> element that is a child of the current <module> element.
 <xsl:template match="module">
 <xsl:copy>
 <xsl:copy-of select="description|period|controller|type"/>
 <xsl:apply-templates select="@*"/>
 <xsl:apply-templates select="attribute"/>
 </xsl:copy>
 </xsl:template>

Because Access will not import attributes, the next template must turn these attributes into elements as
shown here.

Attribute Normal Element Normal

<module tag="FIC-101" plant_area="TANKS" category="FLOW"
user="johnsev" time=" 1095903496">

<module>
 <tag>FIC-101</tag>
 <plant_area>TANKS</plant_area>
 <category>FLOW</category>
 <user>johnsev</user>
 <time>1095903496</time>
</module>

Notice that this template does not specify each attribute by name but instead processes all <module>
attributes irrespective of name or value. Notice how the name() function is used within curly braces {}.
The curly braces provide a means for using an expression to dynamically create an attribute value. The
expression inside the curly braces is evaluated, converted to a string, and the results assigned to the
attribute. The name() fuction returns the name of the current attribute which is used by the
<xsl:element> statement to create an element in the output with the name of the current attribute. The
result is creating an element for each attribute where the new element name matches the name of the
corresponding attribute. The <xsl:value-of> element outputs the value of the current attribute as the text
content or value for the newly created element completing the transformation from attributes to
elements.
 <xsl:template match="module/@*">
 <xsl:element name="{name()}">

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 5 of 12

 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:template>

The final template creates a single <attribute> element in the output for each <attribute> child of a
<module> in the source XML file. This template is a bit more involved so I won't dissect it line-by-line.
Instead, I'll describe what is accomplished by this template and let you figure out how it is achieved.
This template must include the following functionality:

1. The source XML document separates parameter definition (<attribute>) from its value
(<attribute_instance>). This template must normalize this information into a single Parameter
element so the resultant Parameter table in Access will include its value as well as its data type,
category, position on the control diagram, etc. The template is applied to each <attribute> so a
variable is created that points to an <attribute_instance> of the same name within the same
<module> from which the value is output.

2. A <ModuleTag> element must be added to each <Parameter> as a foreign key for relating a parameter
to its parent <module> in the database.

3. The XML for the value of an <attribute_instance> differs for different data types. For example, an
integer type value 25 is stored as <value><cv>25</cv></value> whereas a named set type is stored as
<value><string_value>some string</string_value></value>. The transform must return the value
no matter what the data type.

4. To support DeltaV named set data types, the output must include an <Enum> element that will contain
the name of the named set found in the <attribute_instance>. This element must be included but
empty for non named set data types.

5. An attribute may be assigned multiple categories. A good relational design would have each
category as a separate record in a related table. However, for simplicity sake, the category will be
stored as a single field in the Parameter table as a comma separated list.

6. The name and type attributes must be transformed to elements.

7. The parameter's position on a control drawing defined by elements <x>, <y>, <h>, and <w> must be
transformed as children of the output <Parameter>.

Running the Sample

All of the sample files are available for download including the results of the transformation. Download
the samples and give them a try. Try importing the original XML file into MS Access both with and
without the XSLT transformation and you will see not only the value of this transform but how well it
performs.

You are free to try this stylesheet on your own DeltaV configuration – if you have one. If you need help
exporting your configuration to an XML file, If you have other XML data that you would like to import
into Access, try importing the data without a transform first. The XML structure may be suitable for
import without a transform. If not, you have a great way to use what you've learned here and possibly
expand your reach with XSLT.

Conclusion

There is much more to learn about the XSLT language and its application however it is a relatively easy
language to master compared to a procedural language like VB. With a little practice you'll find you can
solve many problems quite quickly that otherwise may have been too time consuming to consider.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 6 of 12

If you want to learn more about XSLT, you'll find extensive on-line content and hundreds of informative
publications. My personal favorite is XSLT Programmer's Reference by Michael Kay from Wrox Press.
The second edition covers XSLT 1.0 and 1.1. The 3rd edition is also available which covers XSLT 2.0.

The next and final installment of this 4 part tutorial will provide more practical examples of using XSLT
to transform XML data into something more useful.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 7 of 12

1 Sidebars and Graphics

Sidebar – Template Match Pattern Examples

Match Pattern Meaning

match="/"
Matches the document root. This is a useful match pattern for generating
content at the very top and bottom of the output document. This will only
be matched once for the entire document.

match="Phase" This will match any <Phase> element.

match="Phase/Parameter" This matches any <Parameter> element that is a child of a <Phase>
element.

match="Parameter[Type='Real']

Matches any <Parameter> element that contains a <Type> element
containing the text Real. It will look something like this
<Parameter><Type>Real</Type></Parameter>.
Notice that this pattern matches the <Parameter> element. The pattern
inside the square brackets [] is filter criteria. This pattern will not match
<Parameter> elements that have no child <Type> element and it will not
match <Parameter> elements with a <Type> element that contains the text
Integer.

match="Parameter/*" Matches any element that is the child of a <Parameter> element.

match="@*"

Matches any attribute. Notice that an attribute is signified by the @
character. Therefore the match pattern Parameter will match any element
of that name whereas the match pattern @Parameter will match an attribute
of that name.

Sidebar - Frequently Used XSLT Elements

Element Description

<xsl:apply-templates> Selects a set of nodes from the source XML document and processes each node
individually by matching the node with another template in the XSLT document.

<xsl:attribute> Outputs an element attribute. Must be used inside a new element before any
other content for the element is output.

<xsl:call-template> Calls a named template. A template may have a name attribute that allows
calling the template by name instead of using a match pattern.

<xsl:choose>
Provides conditional execution of multiple options similar to a Select Case
statement in VB. The options are defined by child elements <xsl:when> and
<xsl:otherwise> which is equivalent to Case Else in VB.

<xsl:copy>
Copies the current node from the input XML document to the output. This is a
shallow copy that does not copy child nodes or attributes. For a deep copy,
see <xsl:copy-of>.

<xsl:copy-of> Performs a deep copy of the current node from the source XML document to the
output. This copies a node, its attributes, and all descendants.

<xsl:element>
Creates a new element in the output. The element name is defined by name
attribute. This is an alternative to using a literal element when the
element's name is to be determined at runtime.

<xsl:for-each>
Selects a set of nodes for processing similar to For-Each-Next in VB. The
select attribute is an XPath expression that identifies the nodes for
processing.

<xsl:if>
Conditional processing that executes when the test attribute expression
returns true. Unlike most languages, there is no else or else-if. Use
<xsl:choose> in those cases.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 8 of 12

<xsl:number> This element can assign a sequential number to the current node and format the
number for output.

<xsl:output> A top level element that controls the output format. This element must appear
before any templates.

<xsl:param>

May be used as a top level element for creating global parameters or
immediately within an <xsl:template> for creating local parameters.
Parameter values may be passed into the stylesheet for global parameters, or
into the template for local parameters. A param is analogous to an argument
passed to a function in VB.

<xsl:sort> Provides sorting of nodes selected by <xsl:apply-templates> or <xsl:for-
each>.

<xsl:stylesheet> The outermost element of an XSLT document. The element <xsl:transform> may
be used in its place.

<xsl:template> Defines a template for creating output. It may execute by matching nodes to a
pattern or calling the template by name.

<xsl:text>

Will output literal text. Used in favor of literal text when fine control of
the output required. Frequently used for transforms that generate simple text
output such as a CSV or INI file. This element may not contain any other
elements.

<xsl:value-of> Writes the string value of an expression to the output.

<xsl:variable>
May be used as a top level element for creating global variables or within a
template for creating local variables. Unlike <xsl:param> the value cannot
be passed in from an external call.

Sidebar – XSLT Processors

There are many XSLT processors available for download such as Saxon, Xalan, and Microsoft
MSXML. If you are working on a Windows XP computer, you already have a version of MSXML –
most likely version 3 or version 4. All of the samples in this article were tested against MSXML4. The
.NET framework also provides a .NET XSLT processor as well. Command line versions are available
online for the XSLT processors mentioned here.

Different processors may produce slightly different results or may provide different extension functions
that are not portable so to avoid problems it is a good idea to develop your transformations with a
specific processor in mind.

Sidebar - XPath

Another standard from the W3C called XML Path Language (XPath) was developed for addressing parts
of an XML document from within XSLT. XPath is a sort of query language for returning data subsets
from an XML document that has its own syntax and rules like most languages. Within an XSLT
stylesheet, an XPath expression may be used anywhere an XSLT element includes a select="" attribute.

XPath expression look very similar to the pattern matching expressions in <xsl:template match="">
however the syntax and meaning of these expressions (match expression vs. select expression) is not the
same. Most XSLT references provide a comparison of the differences between match expressions and
select expressions otherwise known as XSLT Pattern Matching and XPath Expressions.

Sidebar – XSLT Development

A variety of XSLT development tools are available to assist the development of XSLT stylesheets.
Most tools include debugging, setting break points, statement completion, help files, XML authoring,
and many of the features one expects from a modern development environment. Popular tools are
available from Altova and Stylus Studio. These companies provide an extensive library of tools for
XML and the technologies designed around XML.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 9 of 12

My personal favorite XSLT development tool is Xselerator from Marrowsoft. This application is
extremely intuitive and fast. Specifically designed for XSLT development it includes a great set of
features without a lot of extra "fluff". Unfortunately this product has not been updated in two years
leaving me with the impression that it has a limited future. Still, I have not found a suitable replacement
and until then, I'm stickin' with it.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 10 of 12

Sidebar – Source XML Before Transform
<module tag="AG-100-11" plant_area="T_100" category="" user="JOHNSEV" time="1098221982">
 <description>T-100 Agitator</description>
 <period>1</period>
 <controller>PRODUCTION</controller>
 <primary_control_display>ProdSupport</primary_control_display>
 <instrument_area_display>VMC</instrument_area_display>
 <detail_display></detail_display>
 <type>Control Module</type>
 <sub_type>VMC</sub_type>
……
 <attribute name="AI-IN" type="EXTERNAL_REFERENCE">
 <connection>INPUT</connection>
 <rectangle>
 <x>20</x>
 <y>390</y>
 <h>20</h>
 <w>140</w>
 </rectangle>
 <group>I/O</group>
 <category>
 <category>FIXED_CONNECTOR</category></category>
 </attribute>
 <attribute name="CFM-RUN-IGN" type="ENUMERATION_VALUE">
 <connection>INTERNAL_SOURCE</connection>
 <rectangle>
 <x>280</x>
 <y>1380</y>
 <h>20</h>
 <w>140</w>
 </rectangle>
 <group>Tuning</group>
 <category>
 <category>ADVANCED</category></category>
 <category>
 <category>CFGVIEW</category></category>
 </attribute>
 <attribute name="HOLD-RESET" type="BOOLEAN">
 <connection>INTERNAL_SOURCE</connection>
 <rectangle>
 <x>20</x>
 <y>1020</y>
 <h>20</h>
 <w>140</w>
 </rectangle>
 <group>Operating</group>
 <category>
 <category>COMMON</category></category>
 </attribute>
 <attribute_instance name="AI-IN">
 <value>
 <ref>//SIC-100-11/AO</ref>
 </value>
 </attribute_instance>
 <attribute_instance name="CFM-RUN-IGN">
 <value>
 <set>YES_NO</set>
 <string_value>No</string_value>
 <changeable>F</changeable>
 </value>
 </attribute_instance>
 <attribute_instance name="HOLD-RESET">
 <value>
 <cv>F</cv>
 </value>
 </attribute_instance>
</module>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 11 of 12

Sidebar – XML After Transform – Ready for MS Access Import
<module>
 <tag>100-AGIT</tag>
 <description>T-100 Production Agitator Control</description>
 <period>1</period>
 <controller>PRODUCTION</controller>
 <type>EM</type>
 <plant_area>T_100</plant_area>
 <category></category>
 <user>JOHNSEV</user>
 <time>1095903496</time>
 <Parameter>
 <ModuleTag>AG-100-11</ModuleTag>
 <name>AI-IN</name>
 <type>EXTERNAL_REFERENCE</type>
 <connection>INPUT</connection>
 <group>I/O</group>
 <x>20</x>
 <y>390</y>
 <h>20</h>
 <w>140</w>
 <categories>FIXED_CONNECTOR</categories>
 <enum></enum>
 <value>//SIC-100-11/AO</value>
 </Parameter>
 <Parameter>
 <ModuleTag>AG-100-11</ModuleTag>
 <name>CFM-RUN-IGN</name>
 <type>ENUMERATION_VALUE</type>
 <connection>INTERNAL_SOURCE</connection>
 <group>Tuning</group>
 <x>280</x>
 <y>1380</y>
 <h>20</h>
 <w>140</w>
 <categories>ADVANCED,CFGVIEW</categories>
 <enum>YES_NO</enum>
 <value>No</value>
 </Parameter>
 <Parameter>
 <ModuleTag>AG-100-11</ModuleTag>
 <name>HOLD-RESET</name>
 <type>BOOLEAN</type>
 <connection>INTERNAL_SOURCE</connection>
 <group>Operating</group>
 <x>20</x>
 <y>1020</y>
 <h>20</h>
 <w>140</w>
 <categories>COMMON</categories>
 <enum></enum>
 <value>F</value>
 </Parameter>
</module>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 12 of 12

Graphic of XSLT Transformation Process

XML
HTML
CSV
INI
FHX
L5K
etc…

XML
Document

XSLT
Document

Output
Document

XSLT
Processor

Wednesday, August 20, 2008 Page 1 of 5

The ABCs of XML
Part 4 – Putting It All Together

By John T. Sever
Cascade Controls, Inc.

Introduction

In the final installment of this series, I'll provide practical XSLT samples for transforming XML. Also,
I’ll identify a few common problems you are likely to encounter.

Problem 1 – Why do I get extra text in my output? Answer: Built-in Templates

XSLT beginners often find unwanted unstructured text outside of carefully designed and highly
structured output. The extra text is likely the result of the XSLT processor applying a built-in template.
When <xsl:apply-templates> is invoked and no matching template is found in the stylesheet, the
processor invokes a default built-in template that lives inside the processor.

One built-in template matches the document root or any element node then calls <xsl:apply-templates>
to process the children of the current node. This template gives XSLT its automatic recursive feature for
all elements that have no explicit template in your transform.

The built-in template for text nodes (text between element open and close tags) copies the text to the
output. This built-in template causes great confusion if you don’t understand the way the processor
handles unmatched nodes. You can easily see the results of this behavior by transforming an XML
document with a stylesheet that contains no templates as shown here.
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
</xsl:stylesheet>

There are also built-in templates for comments and processing instructions that do absolutely nothing.

Built-in templates have a lower priority than all other templates. Thus, you may override a built-in
template by creating your own template.

To override the built-in template for text nodes, simply include the following template in your
stylesheet.

<xsl:template match="text()"/>

If you have other templates for processing text nodes, their match patters will be more specific than this
pattern and will therefore be matched by the XSLT processor as having greater priority over this
template. Add this one line template to a blank stylesheet and see that it produces a blank output file – a
great starting point when developing new transforms.

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 2 of 5

Problem 2 – None of my templates work when the XML file includes a default namespace.

Dealing with a default namespace can be a little tricky. Because the designers of XSLT decided that
terseness is of minimal importance, XSLT is a language that is verbose and explicit in most cases.
Default namespaces are uncharacteristically non-explicit and can result in confusion and frustration.
Remember that all elements in an XML document must belong to a namespace. In fact there is no way
to create an XML element that is not part of any namespace. This may seem confusing if you often
work with XML documents that include no namespace declarations. Document elements with no
declared namespace actually belong to a default null namespace and require no special namespace
modifier in match patterns or XPath expressions. A non-null default namespace is one that does not
include a namespace alias prefix. The following examples will illustrate this fine point.

In this sample, RecipeElement and OtherElements are included in the default null namespace and may be
matched in XSLT expressions as RecipeElement or OtherElements respectively.
<RecipeElement>
 <OtherElements/>
</RecipeElement>

In this sample, RecipeElement and its children (OtherElements) belong to the default namespace
urn:Rockwell/MasterRecipe because the namespace does not include a prefix after xmlns. These will no
longer be matched by RecipeElement and OtherElements. To match these requires the namespace be
declared with a prefix in your stylesheet for example xmlns:rs="urn:Rockwell/MasterRecipe".
Remember the value of this attribute must exactly match (case sensitive) the namespace as it is declared
in the XML file. This declaration includes the prefix rs that may now be used for match expressions
such as rs:RecipeElement and rs:OtherElements respectively. Remember that because the namespace is
declared as a default namespace in the XML document, all child elements inherit from this same
namespace unless explicitly overridden by use of another namespace prefix.
<RecipeElement xmlns="urn:Rockwell/MasterRecipe">
 <OtherElements/>
</RecipeElement>

In this sample, the namespace is assigned the explicit prefix rs and therefore is no longer the default
namespace. Because no default namespace is declared and because RecipeElement does not use the rs
prefix, it belongs to the default null namespace and may be matched as RecipeElement and
OtherElements respectively.
<RecipeElement xmlns:rs="urn:Rockwell/MasterRecipe">
 <OtherElements/>
</RecipeElement>

In this sample, the namespace is assigned a prefix which is not used by RecipeElement. Therefore,
matching this element requires a namespace declaration with a prefix in your stylesheet. Although it
may be confusing, the XSLT stylesheet prefix is not required to match the XML source document prefix
because a prefix is only a shorthand local alias of the full namespace. However, I recommend using the
identical prefixes in your transforms to avoid confusion.

You may be surprised to learn that OtherElements is included in the default null namespace! Only
default namespaces are inherited by child nodes. The prefixed namespace used in this sample is not the
default namespace and therefore is not inherited by OtherElements. This means that RecipeElement and
OtherElements are members of different namespaces.
<rs:RecipeElement xmlns:rs="urn:Rockwell/MasterRecipe">
 <OtherElements/>
</rs:RecipeElement>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 3 of 5

I used the top of an RSBatch master recipe for the above samples. Rockwell uses this default
namespace for each recipe that is saved in XML format. Therefore, your transformation for any
RSBatch recipe should look like this.
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rs=" urn:Rockwell/MasterRecipe"
 exclude-result-prefixes="rs">

 <xsl:template match="rs:RecipeElement">
 …
 </xsl:template>
</xsl:stylesheet>

Understanding the use of namespaces in XML and XSLT can be one of the most frustrating aspects of
developing XSLT transforms if you don't understand these fine points so I suggest you re-read this
section and make sure you understand how default namespaces differ from prefixed namespaces. A
little experimentation can help too.

Problem 3 – My stylesheet automatically adds namespace attributes to output elements. Can I remove
these?

You can never produce an output file using namespace prefixes that have not been declared and
therefore each namespace used in the output must be declared at least once. However, you may find that
your output is littered with namespace declarations in nearly every element whether it is used by that
element or not. To suppress unnecessary namespace declarations, use the attribute exclude-results-
prefixes in the xsl:stylesheet element (see previous example). The value of this attribute is a list of
namespace prefixes separated by white space. Remember this will not remove all namespace
declarations but it will remove unused and unnecessary namespace declarations.

Problem 4 – Text Output

Generating text output such as a CSV file (comma separated values) can prove to be more difficult than
you may expect until you understand how the processor handles text and white space. Often you may
find it difficult to generate one particular character like a quotation mark (") because it has specific
meaning in XML or by the XSLT language. Here are a few pointers for generating plain text output.

1. Make sure to include the output element before your templates as follows: <xsl:output
method="text"/>

2. Use concat() function when creating output that is a combination of many text nodes or a mix of text
nodes and literal text. This sample will generate a single CSV row with two comma separated
columns where each value is contained within quotation marks.
<xsl:value-of select="concat('"',Value1, '","', Value2, '"
')"/>

3. Use the <xsl:text> element over literal text in your templates. This will give you more explicit
control of your output while maintaining an easy to read transform. XSLT elements are not allowed
inside an <xsl:text> element. The following verbose sample will produce the same output as the
previous sample.
<xsl:text>"</xsl:text><xsl:value-of select="Value1"/><xsl:text>","</xsl:text><xsl:value-of
select="Value2"/><xsl:text>"</xsl:text>

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 4 of 5

4. Output special characters using character entity escape sequences. The most commonly used
character entities are shown here:

Character Sequence
" "

TAB 	

New Line 

& &

< <

> >

' '

5. Use a CDATA section to simplify using special characters because everything inside of CDATA is
ignored by the XML parser. Again, this will not work if your output is to be a mixture of literal text
and XSLT elements like the previous example. A CDATA section begins with <![CDATA[and ends
with]]>.

The following examples demonstrate practical ways that XSLT can be used in your daily work. XML,
XSLT, and supporting information for each example is available for download at www.????

Example 1: Import DeltaV Modules into MS Access Database

This example fills out the transform that I created for Part 3 of this series.

Example 2: Convert RSBatch Recipe to a Word Document

This example transforms a Rockwell RSBatch recipe XML file into an MSWord 2003 document.
MSWord 2003 supports an XML structure (schema) that includes every feature available from inside
Word 2003. A variety of information regarding XML in MS Office 2003 is available at
http://msdn2.microsoft.com/en-us/office/aa905548.aspx. From the References section on this page, you
may download and install the Office 2003 XML Reference Schemas. This download includes a help file
describing the proper structure for creating a Word document with XML.

If it has not yet sunk it, you can create a Word document with a text editor and some well formed XML
– without installing MS Word! This means that our transform must simply convert the Rockwell
RSBatch XML structure into a Word 2003 structure that can then be opened, viewed, printed, or edited
inside MS Word 2003.

If you spend some time looking over the schema for MS Word 2003 you will notice that it is extremely
verbose. Most of our engineers can use XSLT effectively but I've found that learning
WordProcessingML (XML for MS Word 2003) is too much to ask of my control engineers. To bridge
the gap, we have created our own simplified intermediate XML language that we call CascadeDocML.
This simplified schema is much easier for our engineers to learn as it supports the features we use most
in Word. To support CascadeDocML, we created an XSLT transform that converts from our simplified
syntax to full WordProcessingML syntax. Therefore, to generate a Word document is a two step process
from Input XML, to CascadeDocML, to WordProcessingML.

This is the methodology used for this example. The download for this example includes a document
describing the functionality and structure of CascadeDocML so you may use it for your own

The ABCs of XML Part 3 - XSLT

Cascade Controls, Inc. Page 5 of 5

applications. It supports a small subset of WordProcessingML but it is significantly easier to learn than
WordProcessingML.

Example 3: Search and Replace

This example is used to generate an output file that is an exact copy of the input XML file with
keywords replaced according to a list of search replace pairs defined in a separate file. This transform
may be used to duplicate a complete unit configuration where only the tags have changed. This
transform is different than performing search/replace in a text editor like Notepad as it does not replace
everything throughout the file. Our sample input file is a DeltaV XML file in which we want to be very
selective about what code elements are available for search/replace. For example, if you want to replace
100 with 200 in Notepad, you may end up modifying a setpoint value or drawing x/y coordinates instead
of just modifying module tags.

Although this example may not work perfectly for your specific application, it is extremely modular and
easy to extend to your own needs.

Example 4: Generate Parameter Spreadsheet from RSBatch Area Model

This sample will create an Excel spreadsheet of an RSBatch Area Model with each process cell, unit,
and phase. Also each phase will include a detailed list of the phase parameters and reports. There are
two transforms for this sample. One transform creates a CSV text file that may be opened in Excel. The
other creates an Excel XML file instead of a CSV. The Excel XML output includes spreadsheet
formatting that is much more complete than a simple CSV file.

